Automated FEM Discretizations for the Stokes Equation

نویسندگان

  • Andy R. Terrel
  • L. Ridgway Scott
  • Matthew G. Knepley
  • Robert C. Kirby
چکیده

Current FEM software projects have made significant advances in various automated modeling techniques. We present some of the mathematical abstractions employed by these projects that allow a user to switch between finite elements, linear solvers, mesh refinement and geometry, and weak forms with very few modifications to the code. To evaluate the modularity provided by one of these abstractions, namely switching finite elements, we provide a numerical study based upon the many different discretizations of the Stokes equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Goal-Oriented Error Control I: Stationary Variational Problems

This article presents a general and novel approach to the automation of goal-oriented error control in the solution of nonlinear stationary finite element variational problems. The approach is based on automated linearization to obtain the linearized dual problem, automated derivation and evaluation of a posteriori error estimates, and automated adaptive mesh refinement to control the error in ...

متن کامل

Schwarz Type Solvers for hp-FEM Discretizations of Mixed Problems

The Stokes problem and linear elasticity problems can be viewed as a mixed variational formulation. These formulations are discretized by means of the hp-version of the finite element method. The system of linear algebraic equations is solved by the preconditioned Bramble-Pasciak conjugate gradient method. The development an efficient preconditioner requires three ingredients, a preconditioner ...

متن کامل

Robust preconditioners for the high-contrast Stokes problem

We study the Stokes equation with high-contrast viscosity coefficient and this regime corresponds to a small Reynolds number regime because viscosity is inversely proportional to the Reynolds number. Numerical solution to the Stokes flow problems especially with high-contrast variations in viscosity is critically needed in the computational geodynamics community. One of the main applications of...

متن کامل

Globalization strategies for Newton-Krylov methods for stabilized FEM discretization of Navier-Stokes equations

In this work we study the numerical solution of nonlinear systems arising from stabilized FEM discretizations of Navier–Stokes equations. This is a very challenging problem and often inexact Newton solvers present severe difficulties to converge. Then, they must be wrapped into a globalization strategy. We consider the classical backtracking procedure, a subspace trust-region strategy and an hy...

متن کامل

Solving the Fluid Pressure Poisson Equation Using Multigrid - Evaluation and Improvements

In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008